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Why you should use COPPER? 
Use COPPER if you want to benefit from the COPPER notation and the COPPER features, from 
which the outstanding one is COPPER’s  asynchronous processing of workflows, based on a 
special Java notation.  

Whenever you need to realise service calls to external systems or  to a database 
asynchronously, COPPER offers the sequential notation, which allows for asynchronous waiting, 
without binding or blocking the current thread. 

Example: 

 @Override 

 public void main() throws InterruptException { 

  System.out.println("started"); 

  final String cid = mockAdapter.foo("foo"); 

  wait(WaitMode.ALL, 5000, cid); // asynchronous wait 

  Response<?> r = getAndRemoveResponse(cid); 

  System.out.println("finished - response="+r); 

 } 

COPPER releases the current wait thread immediately released and can execute other workflow 
instances. Only when the asynchronous response is received, a free thread is used for the 
further processing of the workflow instance. Thus, the number of workflow instances that you 
can execute with asynchronous communication parallely is higher than the number of possible 
operating system threads.  

This is highly advantageous if you have to deal with long response times for asynchronous 
requests, because most of the workflow threads would be busy with waiting.  Another plus is  
the faster and more efficient processing due to the fact that the operating system does not 
need to perform so many thread context changes. 

In addition to this enhanced scalability, COPPER as well offers more precise mechanisms for the 
priorisation of workflow instances. The priority of each workflow instance is defined as a 
numerical value, which you can dynamically modify at runtime. It defines whether a workflow 
instance should be treated in preference to another one. You can of course define your own 
priorisation rules. 

Transient Workflow vs. Persistent Workflow 
As the name says, transient workflows are not stored in a permanent medium such as a 
database, but only reside in the system main memory. 

Typically, you would use a transient workflow for processing reading requests or in cases where 
the workflow instances must not survive the end of lifetime of the related Java process. 

Persistent workflows are stored in a permanent medium, usually in a database so that you can 
restore them at anytime.  They are typically used in the following situations:  

 Long-running Tasks 

Workflow instances exist over a longer time period such as days, weeks, or even months. 
In such cases, the workflow instances must survive starting and stopping the application. 

 Crash Recovery 

In case of a crash recovery, the affected workflow instances must be restored. To enable 
this, so-called checkpoints are written to the database. 
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 High Availability/ Load Distribution 

COPPER runs in a distributed environment. Multiple copper engines, running on different 
nodes, are then coupled to a cluster. This offers high availability, load distribution and 
automatic fail over in case that one or more nodes should crash. Please note that this 
feature requires a high available database system. 

Which Data you should add to your Workflow 

Workflow data are the fields resp. the members of the workflow Java class, i.e. the Data 
Objects in the workflow (see de.scoopgmbh.copper.Workflow.getData()) as well as all data that 
during the execution of a workflow method lie on the stack, i.e. local variables and method 
parameters. 
When you use transient workflows, you can use any data type within a workflow without any 
restrictions.. 
For persistent workflows, however, COPPER implies some technical and organisational 
restrictions. 
The following data are stored with the workflow instance when generating a checkpoint: 

 all fields in the workflow that are not declared as transient, 

 Data Object  that belongs to the workflow, 

 all data that are on the stack while executing the COPPER wait. These are the local 
variables as well as the method parameters. 

Based on this list, we can derive the following best practices: 

 Implement only required data into the workflow, becaue all data must be stored within 
the frame of a checkpoint. Less data generate a smaller footprint, which results in a 
higher performance. 

 Avoid local variables in workflow methods that directly or indirectly use COPPER wait , i.e. 
methods that write a checkpoint. 

 Move code blocks by means of refactoring into own methods. 

 Set variables or parameters that are not needed anymore to null. 

 Reduce dependencies to a minimum 

 Do not use any externally defined interface data structures. Map external data 
structures to internal data structures. 

 Try to use less data types in order to reduce dependencies in order to make any 
later migration of workflow instances as easy as possible. 

 Declare references to service beans within a workflow as transient. The beans should be 
set by COPPER via AutoWire. 

 COPPER  uses by default the Java Object Serialization, i.e.  all data object classes must 
implement the Java Interface Serializable. 

Which Code is part of the Workflow? 

The workflow implements the technical process semantic (high level). The workflow code, i.e. 
the methods, should contain only the process control of the logical workflow steps. 

Example: 

 Call system A and wait for response from A. 

 Write an AuditTrail entry.  
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 Cancel if A responds with an error. 

 For all elements in response  from A: 

 Transmit the element to B and wait for response from B. 

 Write an AuditTrail entry.   

 … 

The processing itself, e.g. the mapping from an internal to an external interface should lie 
outside the workflow. 

You should keep the dependencies to another source code at a minimum. Avoid dependencies 
to external interfaces. 

COPPER supports the usage of loggers such as Simple Logging Fascade, Java or Log4J. 

To minimise the dependencies within a COPPER project and to structure the source code 
properly, we recommend sticking to the project structure as described in the following 
paragraph. 

How to structure your COPPER Project 

Create separate sub-projects for the following: 

 Workflows 

 Contains the COPPER workflows and has only one dependency to the Internal 
Interfaces sub-project. Thus, you avoid dependencies to the implementation of 
internal interfaces or to external interfaces or data structures. 

 Internal Interfaces 

 Contains the internally used interfaces and data structures 

 External Interfaces 

 Contains all externally deployed interfaces and data structures, e.g. JAX-WS 
generated from WSDL and JAXB Binding. 

 Implementation of Interfaces 

 Contains the implementation of the internally used interfaces. It might contain 
adapters that encapsulate service calls to external interfaces. 

How to Version your Workflow 

After deploying a workflow in a production environment, modifications on the workflows such 
as bug fixes or new features might be necessary. In case of a persistent workflows, it raises the 
question if workflow instances that already exist in a production environment will be running 
after deploying a newer workflow version. 

In COPPER, a persistent workflow instance references the related workflow via its Java class 
name. If you modify a workflow and redeploy it, then all already existing and still active 
workflow instances and all workflow instances that are generated at that point in time, will use 
this new workflow. 

This feature might be helpful when a modification should impact existing workflow instances. In 
such case, make sure that only downward-compatible modifications are performed on the 
workflow. The COPPER-workflow-compatibility-rules.pdf document contains a list of compatible 
modifications. 

Please be careful when performing such a modification. COPPER does not check during 
deployment whether existing workflow instances are still compatible. In case of 
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incompatibilities, runtime errors might occur when you reactivate the workflow instance. In 
case of an error, COPPER will set the workflow instance to an error state and will stop execution 
until a manual retry. This allows for the correction of the erroneous instance and for a later 
retry. 

It is easier if a modification should not impact an existing workflow instance. In such case, you 
can just create a copy of the workflow resp. of its Java class and can define a new workflow/ 
class name. We recommend using a serial version number in the class name, e.g. 
ooWorkflow_001, FooWorkflow_002, etc... 

Make sure to keep the old workflow in the deployment as long as related workflow instances 
exist in the environment. You should delete the workflow only when there are no instances of 
that workflow in any environment. 

To avoid that you have to modify the related source code in such places where workflow 
instances are generated and started after the introduction of a new workflow version, COPPER 
provides a so-called WorkflowDescriptionAnnotation that you can add to the workflow. It 
contains an alias and a version number for major and minor versions as well as for the patch 
level. 

Thus, you can generate a workflow instance for an alias or for a specific version or to generate 
the newest version, e.g.  

engine.run(new WorkflowInstanceDescr<Data>("wfAliasName", new Data(...), null, null, null, 
new WorkflowVersion(5,1,0));  

Finally, below is a summary of all best practices for versioning your workflow: 

 After deployment in a production environment, you should not modify a workflow 
anymore.  

 If you, however, have to modify/ patch a productive workflow, apply the compatibility 
rules described in the COPPER-workflow-compatibility-rules.pdf document 

 The class name or the workflow package usually contains a version number, e.g. 
FooWorkflow_001 

 New workflow versions are generated as a copy of a previous version with an 
incremented version number. 

 You can add a common alias and version information to a workflow by means of the 
WorkflowDescription annotation. With the alias, you can start a workflow instance for a 
specific version or for the lates version of a major or minor release (see public void 
run(WorkflowInstanceDescr<?> wfInstanceDescr)) 

 


