
COPPER

Compatibility Rules

for the Migration of Persistent Workflow Instances

Version 1.2, 09.12.2019

Motivation

In case you need to fix a bug or implement a new feature for an existing COPPER
workflow, you might face problems when deploying the modified workflow into an
environment with still active persistent workflow instances in the COPPER database, if
these workflow instances have been instantiated with the old version of that workflow.
There are different options to handle this situation:

1. delete all active instances of the corresponding workflow instances from the
database.

2. keep the old workflow unchanged and create a new version of it using COPPERs
versioning feature (See COPPER annotation @WorkflowDescription). Doing so, the
old workflow instances will keep using the old workflow and the new instances will
use the new one.

3. migrate the existing workflow instances in the database before deploying the new
workflow

4. only apply code modifications to the workflow, that keep it compatible to former
versions.

Whereas option 1 and 2 are not allways possible, especially in production environments,
the effort for option 3 might be very high.
So, in the following we list some compatibility rules that might help you to change
workflows in a way which keeps them compatible to former versions.

Compatibility rules

In common, downward compatible changes of a workflow are code changes, that do not
mix up the order of COPPER wait calls in a method and that do not potentially change the
stack frames of workflow methods that directly or indirectly call COPPER wait.

Furthermore, when using Javas Object Serialization mechanism for the workflow instance
persistence (which is the default), then all compatibility rules to Java Serialization apply.
See Java documentation
http://docs.oracle.com/javase/6/docs/platform/serialization/spec/version.html

https://docs.oracle.com/en/java/javase/11/docs/specs/serialization/version.html.

Some downward compatible changes are:

1. renaming of variable/parameter names. See source code example
de.scoopgmbh.copper.test.versioning.compatibility.CompatibilityCheckWorkflow_0001

2. adding and using a new field. See source code example
de.scoopgmbh.copper.test.versioning.compatibility.CompatibilityCheckWorkflow_0002

3. adding a new method and using it somewhere/everywhere within the workflow.
The new method may not use COPPERs wait directly or indirectly and it may not
declare to throw InterruptException. See source code example

http://docs.oracle.com/javase/6/docs/platform/serialization/spec/version.html
https://docs.oracle.com/en/java/javase/11/docs/specs/serialization/version.html

de.scoopgmbh.copper.test.versioning.compatibility.CompatibilityCheckWorkflow_0003

4. Renaming a method. See source code example
de.scoopgmbh.copper.test.versioning.compatibility.CompatibilityCheckWorkflow_0004

5. Changing the implementation of a method, as long as no COPPER wait calls are
mixed up. See source code example
de.scoopgmbh.copper.test.versioning.compatibility.CompatibilityCheckWorkflow_0005

6. Adding a new waiting method and calling it AFTER existing wait calls (directly or
indirectly). See source code example
de.scoopgmbh.copper.test.versioning.compatibility.CompatibilityCheckWorkflow_0006

7. Adding a new wait call AFTER existing wait calls (directly or indirectly). See
source code example
de.scoopgmbh.copper.test.versioning.compatibility.CompatibilityCheckWorkflow_0006

8. Removing an obsolete field. See source code example
de.scoopgmbh.copper.test.versioning.compatibility.CompatibilityCheckWorkflow_0007

9. Removing an obsolete method. See source code example
de.scoopgmbh.copper.test.versioning.compatibility.CompatibilityCheckWorkflow_0008

Incompatibility rules

Some downward incompatible changes are:
1. adding a new parameter to a directly or indirectly waiting method. See source code

example
de.scoopgmbh.copper.test.versioning.compatibility.CompatibilityCheckWorkflow_E001

2. adding a new local variable to a directly or indirectly waiting method. See source
code example
de.scoopgmbh.copper.test.versioning.compatibility.CompatibilityCheckWorkflow_E002

3. adding and using a new directly waiting method somewhere before an existing
COPPER wait or a method that uses directly or indirectly COPPER wait. See
source code example
de.scoopgmbh.copper.test.versioning.compatibility.CompatibilityCheckWorkflow_E003

4. changing the type of a field. See source code example
de.scoopgmbh.copper.test.versioning.compatibility.CompatibilityCheckWorkflow_E004

5. changing the serialVersionUID of the workflow class. See source code example
de.scoopgmbh.copper.test.versioning.compatibility.CompatibilityCheckWorkflow_E005

6. Replacing method calls of methods that directly or indirectly use COPPER wait. See
source code example
de.scoopgmbh.copper.test.versioning.compatibility.check2.CompatibilityCheckWorkflo
w_E101

7. Adding a field that is not serializable and not transient (when using standard Java
serialisation). See source code example
de.scoopgmbh.copper.test.versioning.compatibility.CompatibilityCheckWorkflow_E006

8. Reordering local variables in a directly or indirectly waiting method. See source
code example
de.scoopgmbh.copper.test.versioning.compatibility.CompatibilityCheckWorkflow_E007
de.scoopgmbh.copper.test.versioning.compatibility.CompatibilityCheckWorkflow_E008

	COPPER
	Compatibility Rules
	for the Migration of Persistent Workflow Instances
	Motivation
	Compatibility rules
	Incompatibility rules

